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High speed underwater systems involve many modelling and simulation difficulties related to shocks,
expansion waves and evaporation fronts. Modern propulsion systems like underwater missiles also
involve extra difficulties related to non-condensable high speed gas flows. Such flows involve many con-
tinuous and discontinuous waves or fronts and the difficulty is to model and compute correctly jump
conditions across them, particularly in unsteady regime and in multi-dimensions. To this end a new the-
ory has been built that considers the various transformation fronts as ‘diffuse interfaces’. Inside these dif-
fuse interfaces relaxation effects are solved in order to reproduce the correct jump conditions. For
example, an interface separating a compressible non-condensable gas and compressible water is solved
as a multiphase mixture where stiff mechanical relaxation effects are solved in order to match the jump
conditions of equal pressure and equal normal velocities. When an interface separates a metastable liquid
and its vapor, the situation becomes more complex as jump conditions involve pressure, velocity, tem-
perature and entropy jumps. However, the same type of multiphase mixture can be considered in the dif-
fuse interface and stiff velocity, pressure, temperature and Gibbs free energy relaxation are used to
reproduce the dynamics of such fronts and corresponding jump conditions. A general model, based on
multiphase flow theory is thus built. It involves mixture energy and mixture momentum equations
together with mass and volume fraction equations for each phase or constituent. For example, in high
velocity flows around underwater missiles, three phases (or constituents) have to be considered: liquid,
vapor and propulsion gas products. It results in a flow model with 8 partial differential equations. The
model is strictly hyperbolic and involves waves speeds that vary under the degree of metastability. When
none of the phase is metastable, the non-monotonic sound speed is recovered. When phase transition
occurs, the sound speed decreases and phase transition fronts become expansion waves of the equilib-
rium system. The model is built on the basis of asymptotic analysis of a hyperbolic total non-equilibrium
multiphase flow model, in the limit of stiff mechanical relaxation. Closure relations regarding heat and
mass transfer are built under the examination of entropy production. The mixture equation of state
(EOS) is based on energy conservation and mechanical equilibrium of the mixture. Pure phases EOS
are used in the mixture EOS instead of cubic one in order to prevent loss of hyperbolicity in the spinodal
zone of the phase diagram. The corresponding model is able to deal with metastable states without using
Van der Waals representation.

The model’s predictions are validated in multi-dimensions against experiments of high velocity projec-
tile impact onto a liquid tank. Simulations are compared to experiments and reveal excellent quantitative
agreement regarding shock and cavitation pocket dynamics as well as projectile deceleration versus time.
Then model’s capabilities are illustrated for flow computations around underwater missiles.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The numerical simulation of modern underwater propulsion
system involves many scientific challenges. Among them, material
interfaces are present due to the combustion gas products injected
through the nozzle into water from the solid rocket motor. As the
ll rights reserved.
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underwater system is moving at high velocity, zones at low pres-
sure appear in the wake of the missile and at geometrical singular-
ities. In these zones, liquid water may reach a metastable state
where the temperature is higher than the saturated one at the local
pressure. Thus evaporation fronts appear transforming liquid
water to vapor or liquid–vapor mixture. The typical problem under
interest is schematized in Fig. 1 where an underwater missile is
moving at high velocity.

From a modelling point of view, the flow model has to account
for:
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Fig. 1. Underwater missile moving at high velocity. Natural cavitation pockets appear at locations where geometrical effects produce metastable liquid state. Combustion
gases injected through the rocket nozzle interact with surrounding liquid and vapor.
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– Liquid and gas compressiblity and associated waves dynamics
(shocks, expansion waves and contact discontinuities).

– Material interfaces of simple contact, where normal velocity and
pressure must be continuous.

– Evaporating interfaces that appear dynamically at locations
where the liquid is metastable, forming cavitation pockets.

In the authors knowledge, such effects have never been ac-
counted simultaneously in a simulation work. The last point, asso-
ciated to cavitation pockets is often considered as isentropic (Liu
et al., 2004). In this frame, cavitation pockets result of mechanical
bubble growth only. In the present work, cavitation pockets result
of both mass transfer and mechanical bubble growth.

The presence of such a variety of waves, discontinuities and
fronts renders impracticable numerical strategies based on sharp
discontinuities representation, like front tracking or interface
reconstruction. It is the reason that yields us to the development
of a diffuse interface theory, on the basis of multiphase flow mod-
eling. In this approach, each discontinuity is solved as a diffuse
zone, like shock capturing methods deal with shock waves in gas
dynamics. The difficulty with these methods is to determine the
correct formulation and the appropriate numerics in order to
match jump conditions. This is the research direction adopted by
the Smash Group 15 years ago.

In Saurel and Abgrall (1999) a multiphase flow model with seven
equations, involving two pressures, two velocities and two temper-
atures was used to solve interface problems of simple contact in or-
der to match equal normal velocities and pressures jump conditions.
This method shown its efficiency for any material flowing in hydro-
dynamic regime (gas, liquid or solid) separated by interfaces. The key
point was the use of infinitely fast relaxation parameters in the inter-
facial diffuse zone in order to relax the two pressures and two veloc-
ity toward their equilibrium values. The same strategy could be used
for the present application, as liquid–gas interfaces are present, ex-
cept that phase transition appears naturally.

More recently (Saurel et al., 2008) phase transition has been
implemented in the diffuse interface formulation in the context of
two-phases only. The corresponding model was able to deal, as limit
cases, with interfaces of simple contact (i.e. without phase transi-
tion) and with evaporating/condensating interfaces. This model also
uses a two-phase formulation, but the stiff mechanical relaxation
responsible for the fulfillment of simple contact interface conditions
is inherent to the model. Indeed, the multiphase model involves a
single pressure and a single velocity (Kapila et al., 2001), and is able
under proper numerical resolution to solve interface problems very
efficiently (Saurel et al., 2009). With the special relaxation procedure
developed in (Saurel et al., 2008) the model is able to deal with evap-
oration fronts propagating in metastable liquids. It has been vali-
dated against basic experiments of evaporation waves in
expansion tubes (Simoes-Moreira and Shepherd, 1999).
However, an important development of the model is necessary
to deal with the present application. The model has to deal with
both condensable and non-condensable gases. This yields an
important difference regarding interface conditions. With con-
densable gases and evaporating liquids, the interface condition in-
volves velocity and pressure jumps while with non-condensable
gases these variables have to be continuous. To deal with such sit-
uation, the flow model of Saurel et al. (2008) is extended to an arbi-
trary number of phases or constituents. The relaxation method
used to match interface conditions with evaporating interfaces is
used when necessary i.e. when evaporation between two fluids is
possible and when local thermodynamic conditions correspond
to metastability for a given phase. The generalization of the model
and method to an arbitrary number of fluids, condensable and non-
condensable is the main goal of the present paper. It is indeed the
key point to solve flows with various types of interfaces.

The paper is organized as follows. The flow model with an arbi-
trary number of constituents is derived in Section 2. A multiphase
model to solve interfaces of simple contact with heat transfer but
without mass transfer is presented as a reduction of a total non-equi-
librium model of Baer and Nunziato (1986) type. This model has the
ability to solve interface problems between non-miscible fluids.
Then mass transfer effects are added to the model. Corresponding
relaxation terms are built on the basis of the entropy production of
the system. The corresponding model is able to deal with evapora-
tion fronts, flashing and cavitation. The thermodynamic closure is
summarized in Section 3. Each phase possesses its own EOS and
the mixture obeys to a mixture EOS able to reproduce the non-mono-
tonic (Wood, 1930) speed of sound as well as another non-mono-
tonic (but lower) sound speed when mass transfer is present.
Numerical results are presented in Section 4. The model is first vali-
dated on problems with interfaces separating non-miscible fluids for
which exact solutions are available. Then, results with mass transfer
are considered, first in one dimension then in two dimensions. The
impact of a high velocity projectile onto a liquid tank is examined.
Computed shock dynamics into water and cavitation pocket in the
wake of the projectile are compared to experimental measurements.
The projectile deceleration versus time is also recorded and com-
pared to the experiments. All comparisons show excellent agree-
ment. Last, the flow around an underwater missile is computed to
illustrate model’s capabilities.
2. Derivation of the model

The flow model we are seeking has to deal with interfaces of
simple contact and evaporating interfaces under a unique mathe-
matical formulation. As wave dynamics is under interest the gov-
erning equations must form a hyperbolic system. A formulation
involving an arbitrary number of constituents (or phases) out of
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thermal equilibrium is also mandatory in order to consider the
appropriate thermodynamics of each constituent: combustion
gases, liquid and its vapor. The multiphase mixture of these con-
stituents will be treated as a homokinetic mixture with a unique
pressure but several temperatures. Phase transition has to be con-
sidered across evaporating interfaces and in the mixture. In order
to circumvent ill-posedness issues associated to cubic EOS (van
der Waals for example) the relaxation method of (Saurel et al.,
2008) will be extended to the present context involving an arbi-
trary number of phases.

The derivation of the flow model follows the lines of Saurel et al.
(2008) where a two-phase mixture only was considered. The main
steps of this method can be summarized as:

(i) The starting point of the modelling is a two phase model in
total disequilibrium. It involves two velocities, two pres-
sures and two temperatures. Heat exchange is considered
but mass transfer is omitted. Indeed, mass transfer modeling
in a two-velocities approach is an issue, particularly when
each phase is compressible.

(ii) With the help of asymptotic expansions in the limit of stiff
mechanical relaxation this model is reduced to a single
velocity and single pressure model, including heat
exchanges (Kapila et al., 2001). This model is able to deal
with diffuse interfaces (Murrone and Guillard, 2005; Petit-
pas et al., 2007; Saurel et al., 2009). It is important to note
that temperature relaxation is not considered in the same
limit. Thus the developed model is a diffuse interface model
with one velocity, one pressure but two temperatures.

(iii) Then, mass transfer effects are considered in the single
velocity reduced model. It consists in modifying mass and
volume fraction equations in order to take into account the
changes related to this physical effect. The forms of added
terms have to be determined in order to close the model.

(iv) The phase’s entropy equations are determined and analysed
allowing the determination of the volume fraction rate of
change due to mass transfer.

(v) The last step is based on the second law of thermodynamics
applied to the mixture. Entropy production yields the well-
posed form of the mass transfer terms allowing closure of
the system. The kinetic parameters involved in these relaxa-
tion terms can be considered as zero at simple contact inter-
face while they are considered infinite at evaporation fronts
(Saurel et al., 2008). Consequently evaporation fronts are
considered at thermodynamic equilibrium.

This derivation method, proposed in Saurel et al. (2008), is the
same as the one used in the following section to develop the mul-
tiphase extension of the model. Nevertheless, difficulties have to be
solved for some points. The details are given when necessary.

2.1. Step (i): the total non-equilibrium ‘parent’ model

The construction of the multiphase single pressure and single
velocity model we are seeking is based on the asymptotic reduc-
tion of the following Baer and Nunziato (1986) type non-equilib-
rium multiphase model. The system is composed with four
equations for each phase:

@ak
@t þ~uI �~rak¼aklðpk�p�Þ;
@akqk
@t þdivðakqk~ukÞ¼0;

@akqk~uk
@t þdivðakqk~uk�~ukÞþ~rðakpkÞ¼pI

~rakþYkkð~u� �~ukÞ
@akqkEk

@t þdivðakðqkEkþpkÞ~ukÞ¼pI~uI �~rakþYkk~uI � ð~u� �~ukÞ
�akpIlðpk�p�ÞþQk

8>>>>>>><
>>>>>>>:

ð1Þ
We denote, respectively, by ak; qk; ~uk; pk; Ek and ek the volume
fraction, the density, the velocity vector, the pressure, the total spe-
cific energy and the internal specific energy of the phase k. The total
specific energy is defined by Ek ¼ ek þ k~ukk2=2.

There are different possibilities to model heat transfer terms Qk.
A possible modeling is Qk ¼ HkðT� � TkÞ where Hk ¼ h � Sk;I involves
the convective heat transfer coefficient h and the specific exchange
surface Sk;I of phase k. Mixture pressure, velocity and temperature
are defined by:

p� ¼
X

k

akpk;

~u� ¼
X

k

Yk~uk;

T� ¼
X

k

YkCvkTk

�X
k

YkCvk:

where the mass fraction is defined by Yk ¼ akqk=q and the mixture
density is defined by q ¼

P
kakqk.

Entropy equations can be written under the form:

akqkTk
dsk

dt
¼ðpI�pkÞð~uI�~ukÞ �~rakþYkkð~u� �~ukÞ2�aklðpk�p�Þ

2þQ k

Regarding positivity of the first term on the right-hand side, appro-
priate estimates for the interfacial pressure pI and velocity~uI are gi-
ven in Saurel et al. (2003) or Chinnayya et al. (2004) where a
symmetric formulation is developed. It is not necessary to detail
these interfacial variables as we are seeking a mechanical equilib-
rium model where all phasic pressures and velocities are equal.

System (1) guarantees conservation for the mixture and is
frame invariant. The interaction terms that appear in the right-
hand side express the effects that drive the system to mechanical
equilibrium by the way of relaxation coefficients l and k.

This system is unconditionally hyperbolic and admits the char-
acteristic waves speeds: uk;uk þ ck;uk � ck for each phase k and the
interface velocity uI .

The thermodynamic closure of System (1) is achieved by appro-
priate convex EOS for each phase: pk ¼ pkðqk; ekÞ. Here each phase
is governed by its own EOS, corresponding to the one of the pure sub-
stance. Example of gas and condensed phase EOS is given in Section 3.

2.2. Step (ii): the diffuse interface flow model without mass transfer

When dealing with interfaces only, System (1) involves unnec-
essary effects (multi-velocities and multi-pressures) and a reduced
model is preferred. We are seeking the simplest model involving
the pertinent physics: interfaces solved as diffused multiphase
mixtures zones. During this reduction step, non-equilibrium ther-
mal effects are retained but mechanical equilibrium ones are re-
laxed. Mass transfer consideration will be addressed in further
section. The reduced system able to deal with interfaces of simple
contact is obtained in the limit of stiff mechanical relaxation:

l ¼ 1
�
; k ¼ 1

�
where �! 0þ:

The derivation is done in Saurel et al. (2008) in the context of two
fluids. The model with an arbitrary number of phases is composed
of two equations for each phase and two equations for the mixture:

@ak
@t þ~u � ~rak ¼ ak

qc2

qkc2
k
� 1

� �
divð~uÞ þ QkCk

qkc2
k
� ak

qc2

qkc2
k

P
j

QjCj

qjc
2
j

 !

@akqk
@t þ divðakqk~uÞ ¼ 0

@q~u
@t þ divðq~u�~uÞ þ ~rp ¼ 0
@qE
@t þ divððqEþ pÞ~uÞ ¼ 0

8>>>>>>>><
>>>>>>>>:

ð2Þ
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Here, ck represents the speed of sound of phase k:

8k; c2
k ¼

p
q2

k
� @ek

@qk

� �
p

@ek
@p

� �
qk

;

and Ck represents the Gruneisen coefficient of phase k:

8k; Ck ¼ vk
@p
@ek

� �
qk

where vk ¼ 1=qk.
The mixture total energy is defined by E ¼

P
kYkek þ 1=2u2.

Entropy equations for this model read:

8k;
dsk

dt
¼ Q k

akqkTk

With the same definition of heat exchanges as in System (1). There
is no difficulty to show that entropy production for the mixture is
positive. The thermodynamic closure of System (2) is achieved by
the pressure equilibrium constraint: pkðqk; ekÞ ¼ p0kðq0k; e0kÞ.

With the help of the phase’s EOS and mixture energy definition,
a mixture EOS can be derived, as will be done in Section 3. With
this definition of the equilibrium pressure, the system admits the
Wood (1930) non-monotonic speed of sound.

Under this form System (2) is able to deal with interfaces of sim-
ple contact, with or without heat transfer. It has been validated
against exact solutions in one-dimension (Riemann problems) and
has shown its ability for multi-dimensional computations (Murrone
and Guillard, 2005; Petitpas et al., 2007; Saurel et al., 2009). The next
step is to introduce mass transfer in the diffuse interface model in or-
der to deal with phase transition and cavitation pocket appearance.

2.3. Step (iii): mass transfer modelling in the diffuse interface method

System (2) describes a compressible multi-phase mixture in
mechanical equilibrium but out of thermal equilibrium. The intro-
duction of mass transfer effects has been considered in Saurel et al.
(2008) in the context of two phases only. Here the method is ex-
tended to an arbitrary number of phases. The addition of mass
transfer modifies the mass equation of each fluid:

8k;
@akqk

@t
þ divðakqk~uÞ ¼ q _Yk

where q _Yk represents the mass transfer of phase k. Expression for
this mass transfer has to be determined. Mass transfer implies
changes in the volume fraction. We assume that the volume frac-
tion equation becomes:

8k;
@ak

@t
þ~u �~rak¼ak

qc2

qkc2
k

�1
� �

divð~uÞþ Q kCk

qkc2
k

�ak
qc2

qkc2
k

X
j

Q jCj

qjc
2
j

 !
þ _ak

ð3Þ

where the volume fraction source terms _ak linked with mass trans-
fer have to be determined too. The determination of the expressions
for mass transfer terms _Yk and volume fraction source terms _ak is
based upon the analysis of the entropy production in each phase
and for the system. The next step is thus to determine the entropy
equation for each fluid.
2.4. Step (iv): determination of the entropy equations of the phases

The entropy equations are determined as solutions of an alge-
braic system built on the basis of:

� energy conservation of the mixture,
� pressure equilibrium between phases.
Let us first examine the constraint given by energy conservation
to the entropy equations. By using the energy and momentum
equations of System (2), a simpler form of the energy equation is
obtained:

de
dt
þ p

dv
dt
¼ 0; ð4Þ

where the mixture internal energy is defined by e ¼
P

kYkek and the
mixture specific volume is given by v ¼

P
kYkvk. Thus (4) becomes:

X
k

Yk
dek

dt
þ p

dvk

dt

� �
þ
X

k

hk
_Yk ¼ 0:

Here hk ¼ ek þ pvk is the enthalpy of the phase k. By using Gibbs
identity for each phase k, we have:

8k;
dek

dt
þ p

dvk

dt
¼ Tk

dsk

dt
:

The mixture energy equation now becomes:

X
k

YkTk
dsk

dt
þ
X

k

hk
_Yk ¼ 0: ð5Þ

This last equation involves the N functions dsk=dt that we have to
determine. The (N � 1) other relations are obtained with the
mechanical equilibrium condition:

8k; 8k0 – k; pkðqk; skÞ ¼ pk0 qk0 ; sk0ð Þ: ð6Þ

Upon differentiation along fluid trajectories, we get:

8k; 8k0– k;
@pk

@qk

� �
sk

dqk

dt
þ @pk

@sk

� �
qk

dsk

dt
¼ @pk0

@qk0

� �
sk0

dqk0

dt
þ @pk0

@sk0

� �
qk0

dsk0

dt
:

With the help of the sound’s speed and Gruneisen coefficient for the
phases,

8k;
@pk

@qk

� �
sk

¼ c2
k and

@pk

@sk

� �
qk

¼ qkCk Tk;

the (N � 1) mechanical equilibrium relations become:

8k; 8k0 – k; c2
k

dqk

dt
þ qkCk Tk

dsk

dt
¼ c2

k0
dqk0

dt
þ qk0Ck0 Tk0

dsk0

dt
ð7Þ

Eqs. (5) and (7) form a system of N equations with the N unknowns
functions dsk=dt. Resolution of this system yields:

8k; qkTk
Ck

C
dsk

dt
þ
X

k0 – k

ak0

Ck0
c2

k
dqk

dt
� c2

k0
dqk0

dt

� �
þ
X

j

hjq _Yj ¼ 0

ð8Þ

The next step is to replace the variations dqk=dt by space variations
and source terms. This is done with the help of mass and volume
fraction equations:

8k;
dqk

dt
¼ �qc2

c2
k

divð~uÞ � Q kCk

qkc2
k

� qc2

c2
k

X
j

Q jCj

qjc
2
j

 !
þ q _Yk � qk _ak

ak

ð9Þ

Thus entropy Eq. (8) become:

8k; qYk
dsk

dt
¼ Q k

Tk
� akC

CkTk

X
j

hjq _Yj þ
akC
CkTk

X
k0 – k

� ak0

Ck0
c2

k0
q _Yk0 � qk0 _ak0

ak0
� c2

k
q _Yk � qk _ak

ak

 !
ð10Þ

Entropy equation for each phase (10) is composed of three terms.
Each of them expresses a physical phenomenon responsible for en-
tropy production:



F. Petitpas et al. / International Journal of Multiphase Flow 35 (2009) 747–759 751
� The first one is related to heat exchange.
� The second one is associated to mass transfer.
� The last term is associated to the pressure relaxation process

associated to mass transfer.

To schematize physical meaning of the last term consider a
pressure perturbation appearing during mass transfer, as shown
in Fig. 2. The system turns back to mechanical equilibrium with
the help of acoustic waves emitted during evaporation. This is sim-
ilar to acoustic waves emitted by flames during their propagation,
that render the flow quasi-isobaric. These acoustic waves are isen-
tropic. We thus consider that the pressure relaxation process pres-
ent during mass transfer is isentropic. This corresponds to
cancellation of the third term in (10). This assumption provides
the N following constraints:

8k;
X

k0 – k

ak0

Ck0
c2

k0
q _Yk0 � qk0 _ak0

ak0
� c2

k
q _Yk � qk _ak

ak

 !
¼ 0

After some manipulation they can be rewritten under the form:

8k; c2
k
q _Yk � qk

_ak

akC
¼
X

j

c2
j

q _Yj � qj _aj

Cj

This implies (N � 1) new relations:

8k0 – k; c2
k0
q _Yk0 � qk0 _ak0

ak0
¼ c2

k
q _Yk � qk _ak

ak

Or,

8k0 – k; _ak0 ¼
ak0

qk0c
2
k0

qkc2
k

_ak

ak
þ

q _Yk0c
2
k0

ak0
� q _Ykc2

k

ak

 !

Using the saturation constraint the volume fractions rate of change
due to mass transfer reads:

8k; _ak ¼
q _Yk

qk
� ak

qkc2
k

qc2
X

j

q _Yj

qj
ð11Þ

This relation provides closure of the volume fraction equations we
were seeking.

2.5. Step (v): mixture entropy inequality

The second principle of thermodynamics applied to the mixture
reads:

@qs
@t
þ divðqs~uÞP 0;

where the mixture entropy is defined by s ¼
P

kYksk. With the
assumption used to determine the rate of change of volume frac-
Fig. 2. Schematic representation of liquid evaporation. An elementary volume Dv of liqu
through liquid and vapor, reflect at volume boundaries and restore pressure equilibrium.
are necessarily weak as evaporation is a continuous phenomenon. Elementary volume a
tions (isentropic pressure relaxation process during mass transfer),
Eq. (10) become:

8k; qYk
dsk

dt
¼ Q k

Tk
� akC

CkTk

X
j

hjq _Yj ð12Þ

Using these expressions and mass equations in the entropy inequal-
ity leads to:X

k

Q k

Tk
�
X

k

akC
CkTk

X
j

hjq _Yj þ
X

k

skq _Yk P 0

which can be reorganized as follows:X
k

Q k

Tk
� 1

TI

X
k

�gkq _Yk P 0 ð13Þ

where an ‘‘interface temperature” appears:
1
TI
¼ C

X
k

ak

CkTk

The extended Gibbs free energies also appear:

8k; �gk ¼ hk � TIsk

Positivity entropy production in (13) will be guaranteed with the
following modeling of heat and mass transfer terms:

8k; Q k ¼
X

k0 – k

Hkk0 ðTk0 � TkÞ;

8k; _Yk ¼
X

k0 – k

mkk0 ðgk0 � �gkÞ

where Hkk0 and mkk0 are positive relaxation parameters that control the
rate at which phases k and k0 relax toward thermodynamic equilib-
rium. This corresponds to the form of mass transfer terms we were
seeking. Note that this modelling of relaxation terms guarantees
equilibrium conditions of equal temperatures and equal Gibbs free
energies.

2.6. The diffuse interface model with heat and mass transfer

We now have a symmetric hyperbolic non-equilibrium com-
pressible multi-phase flow mixture model with heat and mass
exchanges

@ak
@t þ~u � ~rak ¼ ak

qc2

qkc2
k
� 1

� �
divð~uÞ þ QkCk

qkc2
k
� ak

qc2

qkc2
k

P
j

QjCj

qjc
2
j

 !

þ q _Yk
qk
� ak

qc2

qkc2
k

P
j

q _Yj

qj

@akqk
@t þ divðakqk~uÞ ¼ q _Yk

@q~u
@t þ divðq~u�~uÞ þ ~rp ¼ 0
@qE
@t þ divððqEþ pÞ~uÞ ¼ 0

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð14Þ
id is transformed to vapor with a pressure perturbation. Acoustic waves propagates
The overall process is isentropic as these waves are of small amplitude. These waves
nd pressure perturbations tend to zero.
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where:

8k; Q k ¼
X

k0 – k

Hkk0 ðTk0 � TkÞ

8k; _Yk ¼
X

k0 – k

mkk0 ð�gk0 � �gkÞ

The thermodynamic closure of System (14) is achieved by the pres-
sure equilibrium constraint: pkðqk; ekÞ ¼ p0k q0k; e

0
k

� �
. This condition

will be transformed to a mixture EOS in Section 3.
The mixture entropy equation for System (14) reads:

@qs
@t
þ divðqs~uÞ ¼

X
k

Q k

Tk
� 1

TI

X
k

�gkq _Yk P 0

The determination of the temperature relaxation parameters Hkk0

for a multi-phase mixture with arbitrary interfacial area is a difficult
issue. The same remark holds for the phase transition kinetics
parameters mkk0 that does not depend only of interfacial area but
also of local chemical relaxation. To circumvent these difficulties,
we use a solution procedure based on infinite relaxation parame-
ters, but at selected spatial locations only. More precisely, in order
to retain metastable states, the relaxation parameters Hkk0 and mkk0

will be set to zero for locations far from liquid–vapor interfaces.
When an interface separates a liquid and its vapor under metastable
thermodynamic conditions, they will be taken infinite in order to
fulfill equilibrium interface conditions with mass transfer. When
dealing with interfaces of simple contact between a liquid and a
non-condensable gas, they will be set to zero. Such procedure is
summarized by:

Hkk0 ;mkk0 ¼
þ1 if kk0 represent a liquid—vapor pair with one of these two fluids

in metastable state and �6 ðak;ak0 Þ61��
0 otherwise

8><
>:
3. Thermodynamic closure

In most phase transition models a cubic equation of state
(EOS) is used. Such EOS expresses the behavior of a fluid from
pure liquid to pure vapor. These models present an incorrect fea-
ture regarding the square speed of sound that becomes negative
in the spinodal zone of the two-phase region. It results in a loss
of hyperbolicity in this domain, or in other words to incorrect
wave dynamics and even computational failure. In order to cir-
cumvent this difficulty, the present model uses pure substance
EOS for each fluid. It means that each phase will possess its
own EOS. When a liquid and its vapor are under consideration,
Fig. 3. Schematic representation of the thermodynamic path using a cub
the various constants in these EOS are linked to each other in or-
der to fulfill some constraints related to the phase diagram. In the
present paper, we consider ‘‘stiffened gas” (SG) equations of state,
but the method can be generalized to more complex convex
equations of state.

The SG EOS or its generalized forms (Mie–Gruneisen (MG) EOS)
are usually used for shock dynamics in condensed materials. The
parameters used in these EOS are determined by using a reference
curve, usually in the (p,v) plane. In shock physics, the Hugoniot
curve is used. A discussion about MG and SG EOS is given in Men-
ikoff and Plohr (1989). It is also possible to use another reference
curve to determine EOS parameters. In Le Metayer et al. (2004) sat-
uration curves are used to determine SG parameters for liquid and
vapor phases. These reference curves are indeed more relevant for
phase transition.

Doing so, each fluid has its own thermodynamics and in partic-
ular its own entropy. In the present modelling of mass transfer,
relaxation towards equilibrium is achieved by a kinetic process,
contrarily to van der Waals modelling where mass transfer is a
thermodynamic path (Fig. 3). It is the reason why the present mod-
elling preserves hyperbolicity during mass transfer.

When equilibrium is reached, conventional properties of the
phase diagram have to be recovered (latent heat of vaporization,
saturation temperature) that depend on pressure or temperature.
In other words, the two pure fluids EOS must be connected by
some constraints. These constraints are used for the determination
of the various constants involved in these EOSs.

For each phase the thermodynamic state is determined by the
SG EOS that reads:

eðp;vÞ ¼ pþ cp1
ðc� 1Þ v þ q ð15Þ

vðp; TÞ ¼ ðc� 1ÞCvT
pþ p1

ð16Þ

hðTÞ ¼ cCvT þ q ð17Þ

gðp; TÞ ¼ ðcCv � q0ÞT � CvT log
Tc

ðpþ p1Þ
ðc�1Þ þ q ð18Þ

where e;v ¼ 1=q;p; T;h and g are, respectively, the internal energy,
the specific volume, the pressure, the temperature, the enthalpy
and the Gibbs free energy of the considered phase. The constants,
characteristic of each fluid are: c;p1;Cv ; q and q0. A method to
determine these parameters in gas–liquid systems is given in Le
Metayer et al. (2004). For liquid water and steam, corresponding
parameters are summarized in Table 1. Liquid dodecane and steam
SG EOS parameters are given in Table 2.
ic EOS compared to the kinetic process represented in dashed line.



Table 1
Stiffened gas EOS parameters for liquid and vapor water.

p1 ðPaÞ Cp ðJ=kg KÞ Cv ðJ=kg KÞ c q ðJ=kgÞ q0 ðJ=kg KÞ

Liquid 109 4267 1816 2.35 �1167� 103 0
Vapor 0 1487 1040 1.43 2030� 103 �23� 103

Table 2
Stiffened gas EOS parameters for liquid and vapor dodecane.

p1 ðPaÞ Cp ðJ=kg KÞ Cv ðJ=kg KÞ c q ðJ=kgÞ q0 ðJ=kg KÞ

Liquid 4� 108 2534 1077 2.35 �775� 103 0
Vapor 0 2005 1956 1.025 �237� 103 �24� 103
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3.1. Mixture SG EOS

With the help of the phases EOS, the mixture EOS is readily ob-
tained. The mixture specific internal energy definition reads:

qe ¼
X

k

akqkek

By using SG EOS (15), each product qkek can be written as:

8k; qkek ¼
pk þ ckp1;k

ck � 1
þ qkqk

Under pressure equilibrium, we obtain the closure relation for Sys-
tems (2) and (14):

pðq; e;ak;YkÞ ¼
q e�

P
kYkqk

� �
�
P

k
akckp1;k

ck�1P
k

ak
ck�1

ð19Þ

With this mixture EOS, the diffuse interface models derived previ-
ously reproduce propagation of acoustic disturbance at the Wood
speed of sound (Wood, 1930):

1
qc2

w
¼
X

k

ak

qkc2
k

ð20Þ

This sound speed has a non-monotonic behavior versus volume
fraction, as shown in Fig. 4. Systems (2) and (14) are strictly hyper-
bolic with the characteristic waves speeds: uþ cw;u� cw and u.
When stiff heat and mass transfer effects are involved in System
(14), the sound speed decreases to the thermodynamic equilibrium
one, that still has a non-monotonic behavior versus volume
Fig. 4. Wood’s speed of sound versus liquid volume fraction for a liquid–vapor
water mixture.
fraction, but that is lower than the mechanical equilibrium (20)
speed of sound. In this limit, the flow model (14) also reduces to
the mixture Euler equations with equal pressures, equal tempera-
tures and equal Gibbs free energies as closure relations. The details
regarding this limit situation and reduced model are given in Saurel
et al. (2008).
4. Numerical results and validations

The numerical method to solve the compressible multi-phase
flow model of diffuse interfaces (14) with heat and mass transfer
proceeds in two steps. At each time step, the hyperbolic system
in absence of heat and mass transfer is solved. This provides the
hydrodynamic solution. Then stiff thermal and chemical relax-
ations are solved at liquid–vapor interfaces only. The interfaces
are detected from the knowledge of volume fraction fields. The
hydrodynamic solver is fully detailed in Saurel et al. (2009) and
its extension to an arbitrary number of phases is used here. This
solver is not conventional as the hyperbolic system is not conser-
vative. The stiff differential solver for heat and mass transfer is spe-
cifically derived in Saurel et al. (2008). The model capabilities are
illustrated in this section on various test problems involving inter-
faces of simple contact as well as evaporating interfaces. When
available, comparisons are done with exact solutions or experi-
mental ones.

One-dimensional tests are first performed for flows with inter-
faces in shock tubes, with or without evaporation fronts. Second,
two-dimensional configurations are considered. The flow around
a non-deformable high-velocity projectile impacting onto a liquid
tank is computed and is quantitatively compared to experimental
data. The last simulation deals with the simulation of the flow
around and in the wake of an underwater missile.

4.1. Liquid–air shock tube

In this example, the left part of a shock tube is filled with liquid
water at high pressure pl ¼ 109 Pa with density ql ¼ 1000 kg=m3.
The right chamber is set at atmospheric pressure and filled with
air at density qv ¼ 1 kg=m3. The initial discontinuity is located at
x ¼ 0:75 m in a 1-m length tube. For numerical reasons, each
chamber of the tube contains a weak volume fraction of the other
fluid (typically 10�8). SG EOS parameters are given in Table 1 con-
cerning liquid water. Air is treated as an ideal gas with specific heat
ratio cair ¼ 1:4. In the first example, the liquid–gas interface is
solved as a simple contact discontinuity: heat and mass transfer
are not considered. The results are shown at time t ¼ 271 ls in
Fig. 5 and consist of three conventional waves. From left to right,
a left-facing rarefaction wave propagating through the liquid, a
right-facing contact discontinuity, moving from left to right and a
right-facing shock propagating through the air. The numerical



Fig. 5. Shock tube with non-miscible fluids. The numerical solution (symbols) is compared to the exact one (lines). The mesh involves 800 cells. Excellent agreement is
observed and the solution is oscillation free even with very large initial density and pressure ratios.
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solution is compared to the exact one and shows a perfect agree-
ment. This test clearly shows that the method is able to deal with
material interfaces governed by different EOS, and is accurate with
the various continuous and discontinuous waves even with very
large density and pressure ratios.

4.2. Evaporation front propagation in a shock tube

We now consider heat and mass transfer to simulate evapora-
tion front propagation in a shock tube filled with dodecane. In this
example, the left part of a shock tube is filled with liquid dodecane
at high pressure pl ¼ 108 Pa with density ql ¼ 500 kg=m3. The right
chamber is set to atmospheric pressure and filled with vapor dode-
cane at density qv ¼ 2 kg=m3. SG EOS parameters for liquid and
steam dodecane are referred in Table 2. The initial discontinuity
is located at x ¼ 0:75 m in a 1-m length tube. For numerical rea-
sons, each chamber of the tube contains a weak volume fraction
of the other fluid (typically 10�8). The rarefaction wave propaga-
tion transforms the stable high pressure liquid dodecane to a
superheated liquid and evaporation has to be considered at the
interface (Fig. 6). An additional left-facing wave (evaporation front)
appears between the rarefaction wave and the contact discontinu-
ity. It propagates through the superheated liquid and produces a
liquid–vapor mixture at thermodynamic equilibrium and high
velocity. This evaporation front is also associated to a large pres-
sure decrease. Experiments in shock tube have been carried out
in (Simoes-Moreira and Shepherd, 1999) and confronted to numer-
ical results in Saurel et al. (2008) showing very good agreement.

4.3. High velocity projectile impact onto a liquid tank

A high velocity spherical projectile is fired with a velocity of
1270 m=s onto a liquid tank. The projectile is made of tungsten al-
loy (DENAL) which density is 16690 kg=m3. The liquid container is
made of PMMA with 20 mm thickness, transparent for visualiza-
tions, and filled with liquid water. A grid is stuck on the PMMA
container. As it is placed between the light spots and the camera,
shock propagation in the liquid is made visible as it modifies liquid
optical properties. Grid deformations are recorded with the high
speed camera. With the help of the high illumination device the
cavitation pocket that appears in the wake is also visible. A sche-
matic representation of the experimental facility and a typical
experimental result are presented in Fig. 7. From the experiments
qualitative and quantitative observations are obtained. The mea-
sured impact velocity is 1243 m=s, the projectile crossing time in
the tank is 820 ls and the residual velocity is 569 m/s when the



Fig. 6. Dodecane liquid–vapor shock tube with mass transfer. The thermo-chemical solver is used at the interface. An extra wave appears producing evaporation of
superheated liquid. The second jump in mass fraction corresponds to the contact discontinuity separating the liquid–vapor mixture produced by evaporation and shocked
vapor initially present in the right chamber. The velocity graph shows fluid acceleration through the evaporation front.
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projectile exits the tank. Each photograph from experiments allows
determination of the projectile location, the size of the cavitation
wake and shock wave location in liquid water (Fig. 7, right side).
Another important information is given by the projectile recovery
at the end of the experiment: its spherical form is preserved almost
perfectly, so that it is legitimate to neglect its deformation (Lecysyn
et al., 2008). Consequently the flow model (14) is used with 4 fluids
to model this system: liquid water, vapor water, air and solid pro-
jectile. In order to deal with the non-deformable projectile, a cor-
rection is done to the computational cells belonging to the
projectile. Their velocity is reset to those of the projectile center
of mass and the same correction is done regarding the kinetic en-
ergy in the total energy definition, at constant local total energy.
The center of mass velocity is obtained by integrating over the en-
tire domain the projectile momentum divided by the correspond-
ing mass:

~ucm ¼
R

X asqs~uR
X asqs

Corresponding computational results are shown in Fig. 8 at time
t ¼ 0:133 ms. The DENAL projectile is located closed to the tank
center. A mixture of liquid water and steam is ejected from the im-
pact location. The shock wave position in water and the cavitation
wake are clearly visible. We now consider quantitative validation
of the model against experiments. From the experiment it is possi-
ble to record the projectile trajectory versus time, as shown in Fig. 9.
This characteristic trajectory can be fitted by an analytical relation
based on a simplified formulation of the projectile momentum
equation with constant drag coefficient:

qV
@u
@t
¼ �1

2
CdqlAu2 ð21Þ

where ql and q represent, respectively, water and projectile densi-
ties, V is the projectile volume, A represents its frontal section
ðA ¼ pr2Þ where r is the projectile radius and Cd (dimensionless)
the drag coefficient. With constant drag coefficient, solutions of
(21) agree with less than 5% error with experiments. Direct integra-
tion of Eq. (21) results in projectile velocity and location determina-
tion. By denoting m ¼ qV the mass of the projectile, u0 the impact
velocity, x ¼ x0 ¼ 0 the initial impact position at time t ¼ t0 ¼ 0,
we obtain for the velocity:

uðtÞ ¼ u0

1þ CdqlAu0
2m t



Fig. 7. High velocity spherical projectile fired onto a liquid tank. On the left, the experimental facility is schematically represented. On the right, a typical experimental result
is reported showing the shock wave position and the cavitation wake.

Fig. 8. High velocity spherical projectile fired onto a liquid tank. Density contours are plotted at time t ¼ 0:133 ms showing the shock wave position as well as the cavitation
wake and the projectile location.
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And for the trajectory:

xðtÞ ¼ 2m
CdqlA

ln 1þ CdqlAu0

2m
t

� �
ð22Þ

Obviously, Cd is a parameter, determined from the experimental
trajectory. In Fig. 9, cross symbols represent the values recorded
from the experiments, circle symbols represent the analytical curve
from Eq. (22) with Cd ¼ 0:41. The black squares are computational
results from System (14) resolution. Excellent agreement is re-
ported at any time. The same agreement is obtained for the projec-
tile velocity versus time, as shown in Fig. 10. In addition, the total
Fig. 9. Projectile trajectory versus time. Experimental results are represented by cross
coefficient and black squares symbols represent computational results. Excellent agreem
crossing time of the projectile is very well reproduced. The recorded
travel time is 820 ls in the experiments and 815 ls in the compu-
tations. The computed exit residual velocity is 530 m=s to be com-
pared to the experimental one of 569 m=s.

Last, we compare computational and experimental results in
the entire domain at various times. The photographs from the
experiments are shown on top of Fig. 11 at times t ¼ 133 ls on
the left and t ¼ 300 ls on the right. Shock wave location can be
determined from the grid stuck onto the tank, that is distorted dur-
ing shock propagation. The cavitation wake is clearly visible in dark
area. In the same figure but in lower part, we have superimposed
symbols, circles symbols correspond to the analytical solution with constant drag
ent is observed at any time.



Fig. 10. Projectile velocity versus time. The analytical constant drag model solution is shown with dash–dot lines. An error bar with 5% error around the analytical solution is
shown. Computational results are shown with black squares symbols. They always stay inside the error bar of 5%).

Fig. 11. High velocity spherical projectile fired onto a liquid tank. Computational results (density contours) are superimposed with experimental photographs at time
t ¼ 0:133 ms on the left and time t ¼ 0:3 ms on the right.

Fig. 12. Initial configuration for the underwater solid rocket motor computation.
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Fig. 13. Rocket motor moving at high velocity underwater. Mixture density contours are shown. The cavitation pocket composed of propulsion gases and steam is clearly
visible.
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computed liquid water density contour. The shape, size and loca-
tion of the cavitation pocket is in perfect agreement. The location
of the shock wave is clearly recovered too. The ejected mixture
from the orifice also shows excellent agreement too.

4.4. Underwater missile

The last test illustrates model’s capabilities to treat interfaces
with and without phase transition. The typical situation under
interest consists in an underwater missile moving at very high
velocity. In the present simulation the solid rocket motor is rep-
resented by an immersed obstacle surrounded by liquid water at
Fig. 14. Rocket motor moving at high velocity underwater. The left column correspon
contours. From top to bottom, these two variables are shown for liquid, vapor and inert g
present. The gas ejected from the rocket nozzle fills the major part of the cavitation pocke
is present. A portion of combustion gas products move upstream, in the rocket’s head d
velocity 600 m=s. Liquid water is initially at atmospheric pres-
sure with a density of 1050 kg=m3. A weak volume fraction of
vapor ðav ¼ 10�3Þ is initially present into the liquid. A non-con-
densable gas is ejected through the rocket nozzle. In Fig. 13,
compression waves at the rocket’s head are visible and the pres-
sure exceeds 2000 atm. Then the flow undergoes strong rarefac-
tion waves at geometrical singularities and the pressure
decreases below the saturation pressure resulting in liquid evap-
oration. Combustion gases ejected through the nozzle fill the
major part of the pocket. An aspiration phenomenon is also vis-
ible in Fig. 14 where the propulsion gas moves upstream in the
rocket’s head direction.
ds to volume fraction contours, while, the right one corresponds to mass fraction
as, respectively. The black color is used in the regions where the considered fluid is
t. Nevertheless, at the pocket boundary a small mass fraction of vapor (less than 0.1)
irection.



F. Petitpas et al. / International Journal of Multiphase Flow 35 (2009) 747–759 759
5. Conclusions

A relatively simple compared to the problem complexity and
efficient formulation has been built in order to deal with interfaces,
metastable liquids, cavitating flows and shocks in several space
dimensions. The simplicity is due to a flow model valid at each
point location, whose resolution is possible with a single numerical
strategy. Examples with interfaces of simple contact and evaporat-
ing fronts are shown and validated against exact solutions and
experimental data.

In the future it is planned to investigate capillary effects cou-
pling (Perigaud and Saurel, 2005) in this diffuse interface theory
to deal with the direct numerical simulation of evaporating and
flashing bubbles and drops.
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